DISCIPLINESPECIFICELECTIVECOURSE-3(I):IVIATREIVIATICALDATASCIENCE							
CREDITDISTRIBUTION, ELIGIBILITYANDPRE-REQUISITESOFTHECOURSE							
Coursetitle&	Credits	Creditdistributionofthecourse			Eligibility	Pre-requisiteof	
Code		Lecture	Tutorial	Practical/ Practice	criteria	thecourse (if any)	
Mathematical Data Science	4	3	0	1	ClassXIIpass with Mathematics	Basicknowledgeof R/Python DSC-3:Probability & Statistics	

B.Sc.(Hons)Mathematics,Semester-V,DSE-Courses

INFORMATION DATACOUNCE 3/3-844TUE844TUE844TUE844TUE84

LearningObjectives: The main objective of this course is to:

- Introducevarioustypesofdataandtheirsources,alongwithstepsinvolvedindatascience casestudy, including problems with data and their rectification and creation methods.
- Coverdimensionalityreductiontechniques, clustering algorithms and classification methods.

LearningOutcomes: The course will enable the students to:

- Gain a comprehensive understanding of data science, its mathematical foundations including practical applications of regression, principal component analysis, singular value decomposition, clustering, support vector machines, and *k*-NN classifiers.
- Demonstrate data analysis and exploration, linear regression techniques such as simple, multiple explanatory variables, cross-validation and regularization using R/Python.
- Use real-world datasets to practice dimensionality reduction techniques such as PCA, SVD, and multidimensional scaling using R/Python.

SYLLABUSOFDSE-3(i)

UNIT-I: Principles of Data Science

Types of Data: nominal, ordinal, interval, and ratio; Steps involved in data science casestudy: question, procurement, exploration, modeling, and presentation; Structured and unstructureddata:streams,frames,series,surveyresults,scaleandsourceofdata-fixed,

variable, high velocity, exact and implied/inferred; Overview of problems with data-dirty and missing data in tabular formats – CSV, data frames in R/Pandas, anomaly detection, assessing data quality, rectification and creation methods, data hygiene, meta-data for inline data-description-markups such as XML and JSON; Overview of other data-source formats – SQL, pdf, Yaml, HDF5, and Vaex.

Unit-II: Mathematical Foundations

Model driven data in Rⁿ, Log-likelihoods and MLE, Chebyshev, and Chernoff-Hoeffding inequalitieswithexamples,Importancesampling;NormsinVectorSpaces–Euclidean,and metric choices; Types of distances: Manhattan, Hamming, Mahalanobis, Cosine and angular distances, KL divergence; Distances applied to sets– Jaccard, and edit distances; Modeling text with distances; Linear Regression: Simple, multiple explanatory variables, polynomial, cross-validation, regularized, Lasso, and matching pursuit; Gradient descent.

(12 hours)

(15hours)

12

Unit-III: Dimensionality Reduction, Clustering and Classification (18hours)

Problem of dimensionality, Principal component analysis, Singular value decomposition (SVD),Bestk-rankapproximationofamatrix,EigenvectorandeigenvaluesrelationtoSVD, Multidimensional scaling, Linear discriminant analysis; Clustering: Voronoi diagrams, Delaunay triangulation, Gonzalez's algorithm for k-center clustering, Lloyd's algorithm for k-meansclustering,MixtureofGaussians,Hierarchicalclustering,Density-basedclustering and outliers, Mean shift clustering; Classification: Linear classifiers, Perceptron algorithm, Kernels, Support vector machines, and k-nearest neighbors (k-NN) classifiers.

EssentialReadings

- 1. Mertz, David. (2021). Cleaning Data for Effective Data Science, PacktPublishing.
- 2. Ozdemir, Sinan. (2016). Principles of DataScience, Packt Publishing.
- 3. Phillips, JeffM. (2021). Mathematical Foundations for DataAnalysis, Springer. (https://mathfordata.github.io/).

SuggestiveReadings

- FrankEmmert-Streib, etal. (2022). MathematicalFoundations of DataScienceUsingR. (2nd ed.). De Gruyter Oldenbourg.
- WesMcKinney.(2022).PythonforDataAnalysis(3rded.).O'Reilly.
- Wickham, Hadley, etal. (2023). Rfor Data Science (2nded.). O'Reilly.

Practical(30hours)-Practicalworktobeperformed in ComputerLabusing R/Python:

- 1. To explore different types data (nominal, or dinal, interval, ratio) and identify their properties.
- 3. Usethereal-worlddatasets(https://data.gov.in/)todemonstratethefollowing:
 - a) Data analysis and exploration, linear regression techniques such as simple, multiple explanatory variables, cross-validation, and regularization.
 - b) Dimensionality reduction techniques such as principal component analysis, singular value decomposition (SVD), and multidimensional scaling.
 - c) Clusteringalgorithmssuchask-means, hierarchical, and density-based clustering and evaluate the quality of the clustering results.
 - d) Classificationmethodssuchas linearclassifiers, support vector machines (SVM), and *k*-nearestneighbors(*k*-NN).

DISCIPLINESPECIFICELECTIVECOURSE-3(ii):LINEARPROGRAMMINGANDAPPLICATIONS

Coursetitle&Co	Credits	Creditdistributionofthecourse			Eligibility	Pre-requisite
de		Lecture	Tutorial	Practical/ Practice	criteria	offhecourse (if any)
Linear Programming and Applications	4	3	1	0	ClassXIIpass with Mathematics	DSC-4:Linear Algebra

CREDITDISTRIBUTION, ELIGIBILITYANDPRE-REQUISITES OF THE COURSE

LearningObjectives: Primary objective of this course is to introduce:

- SimplexMethodforlinearprogrammingproblems.
- Duallinearprogrammingproblems.
- The applications of linear Programming to transportation, assignment, and game theory.

LearningOutcomes: The course will enable the students to:

- Learnaboutthebasicfeasiblesolutionsoflinearprogrammingproblems.
- Understandthetheoryofthesimplexmethodtosolvelinearprogrammingproblems.
- Learnabouttherelationshipsbetweentheprimalanddualproblems.
- Solvetransportationandassignmentproblems.
- Understandtwo-personzerosumgame,gameswithmixedstrategiesandformulation of game to primal and dual linear programing problems to solve using duality.

SYLLABUSOFDSE-3(ii)

UNIT-I: Introduction to Linear Programming

(12hours)

Linearprogrammingproblem: Standard, Canonical and matrixforms, Geometric solution; Convex and polyhedral sets, Hyperplanes, Extreme points; Basic solutions, Basic feasible solutions, Correspondence between basic feasible solutions and extreme points.

UNIT–II:Optimalityand DualityTheoryof Linear ProgrammingProblem(18 hours) Simplex method: Optimal solution, Termination criteria for optimal solution of the linear programming problem, Unique and alternate optimal solutions, Unboundedness; Simplex algorithm and its tableau format; Artificial variables, Two-phasemethod, Big-Mmethod. Duality Theory: Motivation and formulation of dual problem, Primal-Dual relationships, Fundamentaltheoremofduality;Complementaryslackness.

UNIT-III: Applications

Transportation Problem: Definition and formulation, Northwest-corner,Least-cost, and Vogel's approximation methods of finding initial basic feasible solutions;Algorithm for solvingtransportationproblem.

AssignmentProblem:Mathematicalformulation and Hungarian method of solving. Game Theory: Two-person zero sum game, Games with mixed strategies, Formulation of game to primal and dual linear programming problems, Solution of games using duality.

EssentialReadings

- 1. Bazaraa, MokhtarS., Jarvis, JohnJ., & Sherali, HanifD. (2010). Linear Programming and Network Flows (4th ed.). John Wiley and Sons. Indian Reprint.
- 2. Hillier, FrederickS. & Lieberman, GeraldJ. (2021). Introduction to Operations Research (11th ed.). McGraw-Hill Education (India) Pvt. Ltd.
- 3. Taha, HamdyA. (2017). Operations Research: An Introduction (10 thed.). Pearson.

SuggestiveReadings

- Hadley, G. (1997). Linear Programming. Narosa Publishing House. New Delhi.
- Thie, PaulR., & Keough, G.E. (2008). An Introduction to Linear Programming and Game Theory. (3rd ed.). Wiley India Pvt. Ltd. Indian Reprint 2014.

DISCIPLINE SPECIFICELECTIVECOURSE-3(iii):MATHEMATICALSTATISTICS

(15hours)

CREDITDISTRIBUTION, ELIGIBILITYANDPRE-REQUISITES OF THE COURSE

Coursetitle&Co	Credits	Creditd	listribution	ofthecourse	Eligibility criteria	Pre-requisiteof the course (ifany)
ae		Lecture	Tutorial	Practical/		

UNIT-III:Confidence Intervals, Tests of Hypotheses and Linear Regression Analysis (15 hours)
Interval estimation and basic properties of confidence intervals, One-sample t confidence

				Practice		
Mathematical Statistics	4	3	1	0	ClassXIIpass with Mathematics	DSC-3:Probability & Statistics DSC-11: Multivariate Calculus

LearningObjectives: Themain objective of this course is to introduce:

- The joint behavior of several random variables theoretically and through illustrative practical examples.
- Thetheoryunderlyingmodernstatisticstogivethestudentasolidgroundingin (mathematical) statistics and the principles of statistical inference.
- Theapplication of the theory to the statistical modeling of data from real applications, including model identification, estimation, and interpretation.
- Theideaof Fisherinformationtofindtheminimum possiblevariancefor an unbiased estimator, and to show that the MLE is asymptotically unbiased and normal.

LearningOutcomes: The course will enable the students to:

- Understandjointdistributionsofrandomvariablesincludingthebivariatenormal distribution.
- Estimate model parameters from the statistical inference based on point estimation and hypothesis testing.
- Apply Rao-Blackwell theorem for improving an estimator, and Cramér-Rao inequality to find lower bound on the variance of unbiased estimators of a parameter.
- Understandthetheory of linear regression models and contingency tables.

SYLLABUSOFDSE-3(iii)

UNIT-I: Joint Probability Distributions

Joint probability mass function for two discrete random variables, Marginal probability mass function, Joint probability density function for two continuous random variables, Marginal probability density function, Independent random variables; Expected values, covariance, and correlation; Linear combination of random variables and their moment generating functions; Conditional distributions and conditional expectation, Laws of total expectation and variance; Bivariate normal distribution.

UNIT-II: Sampling Distributions and Point Estimation

Distribution of important statistics such as the sample totals, sample means, and sample proportions,Centrallimittheorem,Lawoflargenumbers;Chi-squared,*t*,and*F*distributions; Distributions based on normal random samples; Concepts and criteria for point estimation, The methods of moments and maximum likelihood estimation (MLE); Assessing estimators: Accuracy and precision, Unbiased estimation, Consistency and sufficiency, The Neyman factorization theorem, Rao-Blackwell theorem, Fisher Information, The Cramér-Rao inequality, Efficiency,

(15hours)

(15hours)

interval, Confidence intervals for a population proportion and population variance. Statisticalhypothesesandtestprocedures,One-sampletestsaboutapopulationmeanand a population proportion, *P*-values for tests; The simple linear regression model and its estimating parameters; Chi-squared goodness-of-fit tests, Two-way contingency tables.

EssentialReading

1. Devore, JayL., Berk, Kenneth N. &Carlton Matthew A. (2021).ModernMathematical Statistics with Applications. (3rd ed.). Springer.

SuggestiveReadings

- Devore, JayL. (2016). Probability and Statistics for Engineering and the Sciences. Ninth edition, Cengage Learning India Private Limited, Delhi. Fourth impression 2022.
- Hogg,RobertV.,McKean,JosephW.,&Craig,AllenT.(2019).Introductionto Mathematical Statistics. Eighth edition, Pearson. Indian Reprint 2020.
- Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction the Theory of Statistics (3rd ed.). Tata McGraw Hill Pub. Co. Ltd. Reprinted 2017.
- Wackerly, DennisD., MendenhallIII, William & Scheaffer, Richard L. (2008). Mathematical Statistics with Applications. 7th edition, Cengage Learning.